If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2/20=42
We move all terms to the left:
y^2/20-(42)=0
We multiply all the terms by the denominator
y^2-42*20=0
We add all the numbers together, and all the variables
y^2-840=0
a = 1; b = 0; c = -840;
Δ = b2-4ac
Δ = 02-4·1·(-840)
Δ = 3360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3360}=\sqrt{16*210}=\sqrt{16}*\sqrt{210}=4\sqrt{210}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{210}}{2*1}=\frac{0-4\sqrt{210}}{2} =-\frac{4\sqrt{210}}{2} =-2\sqrt{210} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{210}}{2*1}=\frac{0+4\sqrt{210}}{2} =\frac{4\sqrt{210}}{2} =2\sqrt{210} $
| 45=18-5y | | 3x+50=4x-20 | | 3/2+x=5/21 | | 3/2-x=5/21 | | 8d+8=21 | | 3/2x=5/11 | | 3/2x=5/21 | | 4/16=3/x | | -50=7(x-3) | | 3a+1=3 | | 6x+-1=6(x+2) | | Jx=7=63 | | 8b-1=6b+19 | | 3=2x+22 | | x=5/3+1 | | 7(4^2x)=28(4x) | | 8/3(3x+4)+96=32/2 | | x^2+10x+25=x+1 | | 2/5x-3=1/5x | | Z=y/5 | | (2x-6)=(x+11) | | 8h-7h+1h= | | 5x+0.02-x=11.98 | | k+5+6k=3k-17+2k | | X+.07x=11600 | | x−5=11−3 | | 70=1.5x+2x | | 8.2x-5=1/6 | | -4=8n | | 4x+5-3×=10 | | 6(8y-4=24y | | 2.6(z+1.8)=14.82 |